Sustainable Energy Ireland (SEI)

Sustainable Energy Ireland was established as Ireland’s national energy agency under the Sustainable Energy Act 2002. SEI’s mission is to promote and assist the development of sustainable energy. This encompasses environmentally and economically sustainable production, supply and use of energy, in support of Government policy, across all sectors of the economy including public bodies, the business sector, local communities and individual consumers. Its remit relates mainly to improving energy efficiency, advancing the development and competitive deployment of renewable sources of energy and combined heat and power, and reducing the environmental impact of energy production and use, particularly in respect of greenhouse gas emissions.

SEI is charged with implementing significant aspects of government policy on sustainable energy and the climate change abatement, including:

- Assisting deployment of superior energy technologies in each sector as required;
- Raising awareness and providing information, advice and publicity on best practice;
- Stimulating research, development and demonstration;
- Stimulating preparation of necessary standards and codes;
- Publishing statistics and projections on sustainable energy and achievement of targets.

It is funded by the Government through the National Development Plan with programmes part financed by the European Union.
Table of Contents

Preface .. ii
Foreword .. iii

SECTION ONE

The ‘Passive House’ .. 1

1.1 Passive House and the Passivhaus Standard .. 1
 1.1.1 Definition of the Passivhaus Standard .. 1
 1.1.2 Technical Definition of the Passivhaus Standard for Ireland 3

1.2 Application of the Passivhaus Standard in the EU and Ireland 3
 1.2.1 Evolution of the Passivhaus Standard in Europe 3
 1.2.2 Application of the Passivhaus Standard in Ireland 4

SECTION TWO

How to Design and Specify a Passive House in Ireland 7

2.1 Building Design Process for a Passive House ... 9

 2.2.1 Passive House Building Envelope .. 10
 2.2.2 Passive House Building Systems .. 17

2.3 Energy Balance Calculations and Passive House Specification 24
 2.3.1 PHPP Software and Applications .. 24
 2.3.2 Passive House Certifications ... 24

SECTION THREE

Passive House Prototype for Application in Ireland ... 29

3.1 Design and Specification ... 31
 3.1.1 Combining Aesthetic and Energy Performance in House Design 31
 3.1.2 Decision Support using Passive House Planning Package (PHPP) Software .. 31
 3.1.3 Prototype Passive House External Wall Sections 32
 3.1.4 Prototype Passive House Design including Mechanical and Electrical Services .. 38

3.2 Cost Considerations ... 39
Preface
By Dr Wolfgang Feist, Founder of the Passive House Institute, Germany

The February 2007 report of the Inter-Governmental Panel on Climate Change (IPCC) has shown that climate change is already a very serious global issue. The negative effects it will have on the ecosystem, the world economy and on living conditions are anticipated to be on a massive scale.

Climate change is caused largely by human behaviour due mainly to the use of fossil fuels as our main source of energy generation. The magnitude of future climate changes is closely linked to worldwide CO₂ emissions into the earth’s atmosphere. The worst effects of global warming, such as a thawing of the entire land-borne ice in Greenland and Antarctica, can still be prevented. However, this requires a substantial reduction in worldwide CO₂ emissions far below the current level.

There is hardly any doubt that an energy system ready for the future will have to be sustainable. Sustainable development is economic development that can be continued in the future without causing significant problems for other people, the environment and future generations.

Passive Housing can play a major role in reducing the impact of global warming. The energy requirement of a passive house is so low that a family will never again need to worry about energy price hikes. Passive Houses are virtually independent of fossil sources of energy and can be fully supplied with renewable energy if a compact heat pump unit is used in combination with an ecological electricity supplier. Due to the low energy requirement of passive houses the regionally available renewable energy sources are sufficient to provide a constant supply of energy for everyone.

Ireland’s mild climate puts it in a favourable position to introduce Passive Houses to mainstream construction compared to the more severe climates prevalent in central Europe.
Foreword

Sustainable Energy Ireland is Ireland's national energy agency, set up to support Irish government energy policy objectives. Following the introduction of new legislation, most notably the European Community Directive on the Energy Performance of Buildings and the recent announcement of the intent to regulate and require the use of renewable energy systems in new buildings, we are seeing the emergence of extraordinary standards of energy performance for building construction in Ireland, as well as a rapid increase in the uptake of renewable energy technologies for building services.

Ireland is facing a number of serious challenges including rising energy costs and meeting our emissions obligations under the Kyoto protocol. These and other factors have given rise to a fundamental rethink in the way we design, construct and operate buildings. As we move forward, it is becoming clear that building 'green' has evolved and is fast becoming the preferred choice, providing high quality, high efficiency, dynamic and cost effective solutions for consumers and businesses. The passive house is the ultimate low energy building. The passive house standard is recognised in Europe as the most advanced in terms of energy performance of buildings and going forward the European Commission is set on implementing the passive house standard and also on setting more stringent requirements for the refurbishment of existing buildings.

Today, the passive house offers one of the most desirable technological and economical solutions for comfortable living and working. It can be applied to new and existing buildings in the commercial, industrial, public and residential sectors. With close to 10,000 passive houses built in Europe, this well proven and tested innovative standard is now attracting significant interest in Ireland with pioneers like MosArt and Scandinavian Homes leading an emerging movement in the construction industry.

In response to the need to educate professionals and their clients on how to design, specify and construct passive houses and facilitate the further development of this standard here in Ireland SEI commissioned ‘Guidelines for the Design and Construction of Passive House Dwellings in Ireland’. These detailed guidelines for self-builders and architects focus on new build houses and cover both conventional block construction and timber frame construction methods. They will ultimately become part of a suite of guidelines to cover, for example, multiple dwellings, non-residential buildings, extensions, renovations etc.

The guidelines cover the rationale and definition of the passive house standard, how to design and specify a passive house along with, construction options, associated services, cost considerations and lifestyle issues. SEI hopes they will be useful in increasing awareness and understanding of the key principles and techniques in designing, constructing and operating the ultimate low energy building – the passive house.

David Taylor
CEO Sustainable Energy Ireland
SECTION ONE

The ‘Passive House’
1.1 Passive House and the Passivhaus Standard

A passive house 1 is an energy-efficient building with year-round comfort and good indoor environmental conditions without the use of active space heating or cooling systems. The space heat requirement is reduced by means of passive measures to the point at which there is no longer any need for a conventional heating system; the air supply system essentially suffices to distribute the remaining heat requirement. A passive house provides very high level of thermal comfort and provision of whole-house even temperature. The concept is based on minimising heat losses and maximising heat gains, thus enabling the use of simple building services. The appearance of a passive house does not need to differ from a conventional house and living in it does not require any lifestyle changes. Passive houses are light and bright due to large glazed areas designed to optimise solar gains, as well as healthy buildings in which to live and work due to fresh air supply through the ventilation system.

The Passivhaus Standard is a specific construction standard for buildings with good comfort conditions during winter and summer, without traditional space heating systems and without active cooling. Typically this includes optimised insulation levels with minimal thermal bridges, very low air-leakage through the building, utilisation of passive solar and internal gains and good indoor air quality maintained by a mechanical ventilation system with highly efficient heat recovery.

Renewable energy sources are used as much as possible to meet the resulting energy demand (PEP, 2006), including that required for the provision of domestic hot water (DHW). It should be noted that the primary focus in building to the Passivhaus Standard is directed towards creating a thermally efficient envelope which makes the optimum use of free heat gains in order to minimise space heating requirement. While there are also limitations on the amount of primary energy that can be used by a dwelling for such uses as DHW, lighting and household appliances, this will not be the primary focus of these guidelines. That is not intended to imply that such energy uses are insignificant, however. In fact, a passive house will have the same DHW requirements as any typical house in Ireland and given the low energy required for space heating the energy demand for DHW will represent a relatively high proportion of the overall consumption. In order to address this, some guidance is provided on strategies to ensure that renewable energies are employed as much as possible for production of DHW.

1.1.1 Definition of the Passivhaus Standard

The Passivhaus Standard is a specific construction standard for buildings with good comfort conditions during winter and summer, without traditional space heating systems and without active cooling. Typically this includes optimised insulation levels with minimal thermal bridges, very low air-leakage through the building, utilisation of passive solar and internal gains and good indoor air quality maintained by a mechanical ventilation system with highly efficient heat recovery. Renewable energy sources are used as much as possible to meet the resulting energy demand (PEP, 2006), including that required for the provision of domestic hot water (DHW). It should be noted that the primary focus in building to the Passivhaus Standard is directed towards creating a thermally efficient envelope which makes the optimum use of free heat gains in order to minimise space heating requirement. While there are also limitations on the amount of primary energy that can be used by a dwelling for such uses as DHW, lighting and household appliances, this will not be the primary focus of these guidelines. That is not intended to imply that such energy uses are insignificant, however. In fact, a passive house will have the same DHW requirements as any typical house in Ireland and given the low energy required for space heating the energy demand for DHW will represent a relatively high proportion of the overall consumption. In order to address this, some guidance is provided on strategies to ensure that renewable energies are employed as much as possible for production of DHW.
Structural air-tightness (reduction of air infiltration) and minimal thermal bridging are essential. A whole-house mechanical heat recovery ventilation system (MHRV) is used to supply controlled amounts of fresh air to the house. The incoming fresh air is preheated via a heat exchanger, by the outgoing warm stale air. If additional heat is required, a small efficient back-up system (using a renewable energy source, for example) can be used to boost the temperature of the fresh air supplied to the house.

The energy requirement of a house built to the Passivhaus Standard is:

- Space heating requirement (delivered energy) of 15kWh/(m²·year) treated floor area (TFA), and
- The upper limit for total primary energy demand for space and water heating, ventilation, electricity for fans and pumps, household appliances, and lighting not exceeding 120kWh/(m²·year), regardless of energy source.

Additionally, the air-leakage test results must not exceed 0.6 air changes per hour using 50Pa overpressurisation and under-pressurisation testing.

In order to maintain high comfort levels in any building, heat losses must be replaced by heat gains. Heat losses occur through the building fabric due to transmission through poorly insulated walls, floor, ceiling and glazing as well as structural thermal bridges.

<table>
<thead>
<tr>
<th>Measure/Solution</th>
<th>Passivhaus Standard for the Prototype House in the Irish Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Super Insulation</td>
<td></td>
</tr>
<tr>
<td>Insulation Walls</td>
<td>U ≤ 0.175 W/m²K</td>
</tr>
<tr>
<td>Insulation Roof</td>
<td>U ≤ 0.15 W/m²K</td>
</tr>
<tr>
<td>Insulation Floor</td>
<td>U ≤ 0.15 W/m²K</td>
</tr>
<tr>
<td>Window Frames, Doors</td>
<td>U ≤ 0.8 W/m²K</td>
</tr>
<tr>
<td>Window Glazing</td>
<td>U ≤ 0.8 W/m²K</td>
</tr>
<tr>
<td>Thermal Bridges</td>
<td>Linear heat Coefficient Ψ ≤ 0.01 W/mK</td>
</tr>
<tr>
<td>Structural Air Tightness</td>
<td>n50 ≤ 0.6/air changes per hour</td>
</tr>
<tr>
<td>2. Heat Recovery/ Air Quality</td>
<td></td>
</tr>
<tr>
<td>Ventilation counter flow air to air heat exchanger</td>
<td>Heat Recovery Efficiency ≥ 75%</td>
</tr>
<tr>
<td>Minimal Space Heating</td>
<td>Post heating ventilation air/ Low temperature heating</td>
</tr>
<tr>
<td>Efficient small capacity heating system</td>
<td>Biomass, compact unit, gas etc.</td>
</tr>
<tr>
<td>Air quality through ventilation rate</td>
<td>Min 0.4 ac/hr or 30m³/pers/hr</td>
</tr>
<tr>
<td>Ventilation Supply Ducts Insulated</td>
<td>Applicable</td>
</tr>
<tr>
<td>3. Domestic Hot Water</td>
<td></td>
</tr>
<tr>
<td>DHW cylinder and pipes well insulated</td>
<td>Applicable</td>
</tr>
<tr>
<td>Solar thermal system</td>
<td>Recommended</td>
</tr>
<tr>
<td>4. Passive Solar Gain</td>
<td></td>
</tr>
<tr>
<td>Window Glazing</td>
<td>Solar energy transmittance g ≥ 50%</td>
</tr>
<tr>
<td>DHW solar heating</td>
<td>Area to be dictated by house size and occupancy</td>
</tr>
<tr>
<td>Solar Orientation</td>
<td>Minimal glazing to north</td>
</tr>
<tr>
<td>Thermal Mass within Envelope</td>
<td>Recommended</td>
</tr>
<tr>
<td>5. Electric Efficiency</td>
<td></td>
</tr>
<tr>
<td>Energy labelled Household appliances</td>
<td>A rated appliances</td>
</tr>
<tr>
<td>Hot water connection to washing machines/ dishwashers</td>
<td>Recommended</td>
</tr>
<tr>
<td>Compact Fluorescent Lighting</td>
<td>Recommended</td>
</tr>
<tr>
<td>Regular maintenance ventilation filters</td>
<td>Recommended</td>
</tr>
<tr>
<td>Energy Efficient fans</td>
<td>Recommended</td>
</tr>
<tr>
<td>6. On-site Renewables</td>
<td></td>
</tr>
<tr>
<td>Solar thermal system</td>
<td>Recommended</td>
</tr>
<tr>
<td>Biomass system</td>
<td>Recommended</td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>Application in a case by case basis</td>
</tr>
<tr>
<td>Wind Turbine</td>
<td>Application in a case by case basis</td>
</tr>
<tr>
<td>Other including geothermal</td>
<td>Application in a case by case basis</td>
</tr>
</tbody>
</table>

Table 1. Technical Definition of the Passivhaus Standard for Ireland.
from uncontrolled cold air infiltration through leaky construction and poorly fitted windows and doors. In a typical dwelling, such heat losses have to be balanced by heat gains mostly contributed by a space heating system. The internal heat gains from occupants and other sources such as household appliances as well as passive solar gains contribute a relatively small proportion of the total overall need in a conventional dwelling. In a passive house, the heat losses are reduced so dramatically (through better insulation and airtight detailing) such that the same internal gains and passive solar gain now contribute a relatively high proportion of the total need. As a result of this, a smaller space heating system is therefore required compared to that needed in a conventional dwelling.

A new built semi-detached, two-storey Irish house built to comply with the requirements of Building Regulations Technical Guidance Document (TGD) Part L 2005, Conservation of Fuel and Energy, uses approx. 75kWh/m² delivered energy for space heating and 159kWh/m² primary energy. The Passivhaus Standard requirement for space heating is 15kWh/(m²/year) delivered energy. When compared, the reduction in space heating demand represents 80%.

1.1.2 Technical Definition of the Passivhaus Standard for Ireland

In Table 1, a range of U-values are specified in order to meet the Passivhaus Standard of space heating requirement (delivered energy) of 15kWh/(m²/year) for the Irish climate. Specifying U-values is dependent upon many variables and can only be verified through testing the performance of the dwelling design in the PHPP software. The U-values included in Table 1 have been tested for the prototype passive house presented later in Section 3. This prototype house is a semi-detached two-storey house of very compact form. A detached bungalow house of sprawling form would require much lower U-values to meet the Passivhaus Standard. Due to the mild Irish climate, it is possible to use U-values for walls in the prototype house that are higher than those typically recommended by the Passivhaus Institute for colder central European climates.

A sensitivity analysis was undertaken using different U-values for the prototype house in order to see, for example, whether it would be possible to relax the building fabric requirements e.g. double glazing, in Ireland and still achieve the Passivhaus Standard. The results of this analysis are included in Section 2.

1.2 Applications of the Passivhaus Standard in the EU and Ireland

1.2.1 Evolution of the Passivhaus Standard in Europe

The Passivhaus Standard originated in 1988 by Professor Bo Adamson of the University of Lund, Sweden and Dr. Wolfgang Feist of the Institute for Housing and the Environment. The concept was developed through a number of research projects and first tested on a row of terraced houses by Dr. Wolfgang Feist in 1991 in Darmstadt, Germany. The Passivhaus Institut (http://www.passiv.de) was founded in Darmstadt, Germany in 1996 by Dr. Wolfgang Feist as an independent research institution. Since then, it has been at the forefront of the Passive House movement in Germany and has been instrumental in disseminating the standard throughout Europe and overseas (more details in Section 2).
Dwellings built to the Passivhaus Standard have been constructed all over Europe in recent years but most especially in Germany and Austria where the Passivhaus Standard was first applied. Over 10,000 dwellings have been built to the standard throughout Europe, including 4,000 in Germany and Austria, Norway, Sweden, Denmark and Belgium and this number is continuing to grow. CEPHEUS (Cost Efficient Passive Houses as European Standards) was a research project (1998–2001) that assessed and validated the Passivhaus Standard on a wider European scale. The project was sponsored by the European Union as part of the THERMIE Programme of the European Commission, Directorate-General of Transport and Energy. Under CEPHEUS, 14 housing developments were built, resulting in a total of 221 homes constructed to the Passivhaus Standard in five European countries. Another project supported by the European Commission, Directorate General for Energy and Transport is PEP, which stands for ‘Promotion of European Passive Houses’ (http://www.europeanpassivehouses.org). PEP is a consortium of European partners aiming to spread the knowledge and experience on the passive house concept throughout the professional building community, beyond the select group of specialists.

1.2.2 Application of Passivhaus Standard in Ireland

The Kyoto Protocol came into force in 2005 and the proposed targets of reducing CO2 emissions by 8% compared to 1990 levels by the period 2008–2012 became legally binding for EU Member States (UNFCCC, 1997). Ireland’s target under the Kyoto Protocol to limit green house gas emissions to 13% above 1990 levels by that period was reached in 1997, and it is likely that the target will be overshot by up to 37% (74Mt CO2) by 2010 (O’Leary et al, 2006). The EC Green Paper on Energy Efficiency (EC, 2005), states that it is possible for the EU-25 Member States to achieve energy savings of 20% by 2010, and sees the greatest proportion of these savings (32%) coming from the built environment.

In Ireland the residential sector accounts for 26% of primary energy consumption and 27% of energy related CO2 emissions (11,376 kt CO2), the second largest sector after transport at 32%. The average dwelling emits approximately 8.2 tonnes of CO2 emissions, 5 tonnes from direct fuel use and 3.2 tonnes from electricity use (O’Leary et al, 2006) and Irish dwellings have a higher consumption of energy, electricity and energy related CO2 emissions per dwelling compared to the average of the EU-15 (EC, 2005).

The Government White Paper ‘Delivering a Sustainable Energy Future for Ireland’ (DCMNR, 2007) highlighted that amendment to the Building Regulations in 2008 would bring a further 40% energy reduction and related CO2 emissions in new build construction. The recent Programme for Government has brought forward that amendment to 2007 and committed to a further amendment in 2010 to 60% below current standards.

It is clear that the performance of both new build and existing housing stock must be addressed if we are to achieve the objectives set out both at European and national level. The energy requirement of a house built to Passivhaus Standard goes beyond the proposed 40% energy reduction and related CO2 emissions in new build construction.

A study completed by UCD Energy Research Group quantified the potential reduction for space heating energy and CO2 emissions when the Passivhaus Standard for space heating of 15kWh/m²/year is applied to the Irish new build residential construction market (Brophy et al. 2006). Five scenarios of varying levels of application were investigated. The tool used in this study was a computer based model, developed as part of the ‘Homes for the 21st Century’ study (Brophy et al. 1999), which profiled the existing national dwelling stock by dwelling form, insulation characteristics and heating system types. The model was used to predict the energy consumption and CO2 emissions of dwellings with a typical floor area of 100m², constructed to 2002 building regulation standard. This provided national common practice energy consumption and CO2 emissions figures. It was found that a typical Irish
dwellings consume 9,722 kWh/year of delivered energy on space heating and as a result releases 2,855 kgCO2/year into the atmosphere. The space heating requirements for the same size of dwelling built to Passivhaus Standards was found to be only 1,500 kWh/year of delivered energy which equates to 176 kgCO2/year. (It was assumed 50:50 split between the use of gas and wood pellets for space heating energy source as typically used in passive houses). The difference in delivered energy consumption and carbon dioxide emissions between the two construction types for a single building over one year was therefore 8,222 kWh/year and 2,680 kgCO2/year. Applying potential energy and CO2 emissions saving rates to the 20 year average new build dwelling construction rate of 40,000 homes per year the following results were calculated. The results showed that substantial savings are achievable through the application of the Passivhaus Standard in Ireland (Table 2).

The Passivhaus Standard was first introduced in Ireland by the Swedish architect Hans Eek at the ‘See the Light’ conference organised by Sustainable Energy Ireland (SEI) in June 2002. Tomás O’Leary of MosArt Architects, a delegate at the conference, was so enthused by Mr Eek’s presentation that he decided on the spot to sell his townhouse, buy a site in the countryside in Co. Wicklow and build a passive house. The O’Leary family has been living in the “Out of the Blue” house since Spring 2005. This house is the first Irish passive house to be certified by the Passivhaus Institute in Germany, and has been the focus of a research, demonstration and energy monitoring project funded by Sustainable Energy Ireland. MosArt Architects, the Passivhaus Institute of Dr Wolfgang Feist and the UCD Energy Research Group are partners in the project. The project is instrumental in establishing the basis for the deployment of the Passivhaus Standard in Ireland in different ways:

- it has provided a learning experience for professionals involved in the design, specification, construction and servicing stages
- it will provide a scientific basis for performance assessment through

![Building Energy Rating Label. Source: Sustainable Energy Ireland.](image)

The EU Energy Performance of Buildings Directive (EPBD) was transposed into Irish law on 4th January 2006. This states that when a building is constructed, rented or sold a Building Energy Rating (BER) certificate and label must be made available to prospective buyers or tenants. The BER is expressed in terms of kWh of primary energy/m²/year. A passive house would achieve an A2 rating (UCD Energy Research Group).

<table>
<thead>
<tr>
<th>Percentage (and number) of new dwellings built to Passivhaus Standard</th>
<th>Potential energy and CO2 emissions savings per year</th>
<th>Potential energy and CO2 emissions savings in 20 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% (400)</td>
<td>3.29 GWh, 0.069 TWh</td>
<td>10.69 GWh, 0.204 TWh</td>
</tr>
<tr>
<td>5% (2,000)</td>
<td>16.44 GWh, 0.345 TWh</td>
<td>66.90 GWh, 1.372 TWh</td>
</tr>
<tr>
<td>20% (8,000)</td>
<td>65.78 GWh, 1.381 TWh</td>
<td>267.12 GWh, 5.511 TWh</td>
</tr>
<tr>
<td>50% (20,000)</td>
<td>164.44 GWh, 3.453 TWh</td>
<td>657.78 GWh, 13.813 TWh</td>
</tr>
</tbody>
</table>

Table 2: Potential for space heating energy and carbon dioxide savings.
monitoring and evaluation

- it is an excellent demonstration tool and has been the focus of many visits, presentations and journal articles.

References

European Commission (EC), 2006.

“Promotion of European Passive Houses (PEP)” [Internet] PEP. Available at: http://www.europeanpassivehouses.org/html

2 A passive house is a building, for which thermal comfort (ISO7730) can be achieved solely by post-heating or post-cooling of the fresh airmass, which is required to fulfill sufficient indoor air quality conditions (DIN 1946) - without a need for recirculated air. Source: http://www.passivhaustagung.de/Passive_House_E/passivehouse_definition.html

3 See http://www.passiv-on.org/

SECTION TWO
How to Design & Specify a Passive House in Ireland
This section introduces the passive house building design process as well as explaining the balance between energy losses and gains. It also provides an overview of the various building systems and technologies typically employed in a passive house and presents the PHPP software used for energy balance calculations. The design and specification of the example prototype passive house in the Irish climate developed as part of these guidelines will be covered in greater detail in Section 3.

2.1 Building Design Process for a Passive House

Client’s Brief
The design of a passive house will typically commence with developing a brief with the Client, whether this is a family wishing to build a single rural dwelling, a Local Authority progressing a housing scheme or a commercial developer proposing a mixed residential project. The brief would typically outline the Client’s practical requirements in terms of space functions and density and also their preferred image or concept for the building(s). Clients interested in building a passive house will often have carried out a considerable amount of research on the subject and so will already be relatively well informed regarding the benefits of living in a passive house.

Site Visit
A site visit is important to (thus reducing the potential for achieving a glazed south facing façade) identify the presence of structures, landform or evergreen trees which might cast shadows on the house during the short winter days when the sun is low in the sky. It may happen that the best views from the site are to the north suggesting the placement of large glazing areas on the northern façade in order to optimise the best view. All orientation options must be considered by the designer at this stage - the house must not only function well in terms of energy efficiency but also in terms of optimising the potential of the site and its surroundings.

Sketch Design
The next phase of the design process is to develop a sketch design for the house. The basic principles of passive house design will greatly inform the development of the initial design. An ideal approach would be to have the longest façade of the house facing south, a bias of glazing towards the southern elevation with reduced glazing area on the northern elevation and a compact form in order to minimise surface to volume ratio. Shading devices may be required in order to protect against the risk of overheating in summer and the aesthetic integration of these are essential. In terms of internal layout, it is preferable to organise, where possible, family rooms and bedrooms on the southern elevation with utility room and circulation spaces on the northern elevation where availability of sunlight is not so critical.

Initial Evaluation of Energy Performance
Once the sketch design has been approved by the client, it is important to test the energy balance of the house design using the Passive House Planning Package (PHPP). The essential elements of the design are entered into the spreadsheet U-values of walls, floors, roof and glazing as well as orientation, volume, and size of the house. This will provide an early indication of whether the Passivhaus Standard is being achieved. If the space heat requirement is significantly above the threshold of 15kW/m²/year then the building will have to be modified whether in terms of improved U-values, reorganisation of glazing or adjustment of form. The designer should intuitively know how improvements can best be achieved while broadly remaining true to the agreed sketch design. If the space heat requirement is significantly less than the threshold level, then it might be possible to increase the U-values and therefore save on insulation costs. Care should be taken to note other performance indicators calculated by the software, such as frequency of overheating, for example.

Detailed Design and Specification
The design of the house is next developed to the level of detail required to apply for planning permission. Typically this would not require all construction details but it is wise to consider the various technologies at this stage in order to avoid difficulties later on. The type of construction will need to be considered, whether timber frame, concrete, externally insulated masonry, insulated concrete formwork, straw bale, etc as well as the space required for services such as solar panels, large domestic hot water tank, mechanical ventilation equipment with supply and exhaust ducting. The specification of such services might be outside the expertise of the house designer and it may be required to commission the services of a Mechanical and Electrical Engineer. It is also critically important to plan ahead in terms of airtightness and
cold bridging detailing as these often represent the most challenging aspects of passive house design. The detailed design should be re-tested in the PHPP software to ensure that the Passivhaus Standard is achieved. At this stage all the required data fields have to be completed as accurately as possible (details of the PHPP tool datasheets is outlined in section 2.3.1). This might require some minor redesign of the initial house design. The Client should be kept informed at all times of the decisions being made by the design team and have the opportunity to suggest alterations should the need arise.

Tender Documents and Drawings

Once planning permission has been granted, a more detailed set of technical drawings will be required in order to enable the construction of the house. As highlighted above, the emphasis will be on detailing of junctions between different elements of the building, practical requirements for minimising heat loss through cold bridging, planning for airtightness and the location and routing of services. The sizing of the ventilation equipment, back-up space heating, solar domestic hot water system, as well as details of controls for space and water heating and ventilation, will have to be specified at this stage. The detailed drawings and specification can then be issued for tender to competent contractors.

Post Construction Testing

This is the final stage to determine whether the constructed dwelling actually meets the air-tightness requirements of the Passivhaus Standard. The air-leakage must not exceed 0.6 air changes per hour using 50Pa overpressurisation and underpressurisation testing. An independent inspection and testing body should conduct the testing activities. It is important to undertake this test as soon as the airtight layer is complete so that any leaks can be rectified. When the house does not meet the requirements further testing may be required.

2.2 General Principles: Heat Energy Losses & Heat Energy Gains

Thermal transmittance (U-value) relates to a building component or structure, and is a measure of the rate at which heat passes through that component or structure when unit temperature difference is maintained between the ambient air temperatures on each side. It is expressed in units of Watts per square metre per degree of air temperature difference (W/m²K).

Figure depicting 2005 Building Regulation standard required for insulation and required insulation to meet the Passivhaus Standard in Ireland. Source: UCD Energy Research Group.
house is to construct a building envelope that will significantly minimise heat loss and optimise solar and internal heat gain to reduce the space heating requirement to 15KWh/(m²year).

The following building envelope parameters are fundamental in this process:

1. Well insulated building envelope
2. High energy performing windows and doors
3. Minimised heat loss through thermal bridging
4. Significantly reduced structural air infiltration
5. Optimal use of passive solar and internal heat gains

Building Envelope Insulation

Many building methods can be used in the construction of a passive house, including masonry, lightweight frames (timber and steel), prefabricated elements, insulated concrete formwork, straw bale and combinations of the above. The prototype house presented in this publication (details in Section 2 and 3) illustrates both masonry and timber frame construction as representative of most typically used building methods for dwellings in Ireland.

Continuous insulation of the entire thermal envelope of a building is the most effective measure to reduce heat losses in order to meet the Passivhaus Standard.

A thermographic image is used to illustrate the difference between the well and poorly insulation levels in a house. Heat loss through the building envelope is highlighted by the green, yellow and red colouring. The amount of radiation emitted increases with temperature, therefore warm objects stand out well against cooler backgrounds. In the passive house some heat is lost through windows but heat lost through the external wall is very low. In the conventional building, on the other hand, there is heat loss from the entire building envelope, especially through windows.

Insulation of the building envelope can be divided into four distinct areas: external wall, floor, roof and windows. Existing passive houses in Central and Northern European countries have been achieved with U-values for walls, floors and roofs ranging from 0.09 to 0.15 W/(m²K) and average U-value for windows (including glazing and window frames) in the region of 0.60 to 0.80 W/(m²K). These U-values far exceed those currently required under the Irish Building Regulations, with the most marked difference pertaining to windows, wall and floor.

A sensitivity analysis using the Passive House Planning Package (PHPP), v2004, software was undertaken using a range of U-values for the timber frame and masonry constructions of the prototype house using climate data for Dublin. In all options tested the same data was input into PHPP for air-tightness 0.6ac/h@50Pa, ventilation and minimised thermal bridging. Various parameters were tested in order to determine, for example, the required level of U-values for the building envelope in the Irish climate, and to ascertain whether it would be possible to use double glazing and still achieve the Passivhaus Standard in Ireland. The results are: Option 1 being the most energy efficient house and Option 8 being the least energy efficient. An outline description of each of the eight

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum average elemental U-value W/(m²K)</td>
</tr>
<tr>
<td>• Pitched roof, insulation horizontal at ceiling level 0.16</td>
</tr>
<tr>
<td>• Pitched roof, insulation on slope 0.20</td>
</tr>
<tr>
<td>• Flat roof 0.22</td>
</tr>
<tr>
<td>• Walls 0.27</td>
</tr>
<tr>
<td>• Ground Floors 0.25</td>
</tr>
<tr>
<td>• Other Exposed Floors 0.25</td>
</tr>
<tr>
<td>• Windows and roof lights 2.20</td>
</tr>
</tbody>
</table>
Regulations due to be updated in 2008
options analysed is provided. Only the first four achieve the Passivhaus Standard set for space heating (delivered energy) of 15 kWh/(m²·year) treated floor area:

- **Option 1** - U-value 0.10 W/(m²·K) for all building elements combined with triple gazed windows with average U-value (including glazing and window frames) of 0.80 W/(m²·K) results in space heating requirement significantly below the standard required of 15 kWh/(m²·year).

- **Option 2** - (This is the option that has been used in the design of the prototype passive house in Ireland as part of these Guidelines), with U-value 0.15 W/(m²·K) for all building envelope elements combined with triple glazed windows. The results show space heating requirement below the Passivhaus Standard.

- **Option 3** - All building envelope elements with U-value of 0.10 W/(m²·K) combined with an efficient double glazed unit with low U-value 1.1 W/(m²·K) achieves the Passivhaus Standard.

- **Option 4** - U-value 0.175 W/(m²·K) for external walls and U-value 0.15 W/(m²·K) for all other building envelope elements, coupled with triple glazed windows. The result is exactly at the threshold of the Passivhaus Standard but was not used for the prototype house as there is no margin in site operations.

- **Option 6** - also a failure is the combination of U-value 0.10 W/(m²·K) for building fabric in combination with standard double glazed units.

- **Option 7** - U-values 0.15 W/(m²·K) for walls, roof and floor as the prototype house but with standard double glazing U-value 2.20 W/(m²·K) which comes way above the Passivhaus Standard.

Table 3: Sensitivity analysis of the passive house prototype house in Ireland outline test results for eight options. Source: MosArt Architecture.

<table>
<thead>
<tr>
<th>Option</th>
<th>U-Values of ext. wall</th>
<th>U-Values of roof</th>
<th>U-Values of floor</th>
<th>Average U-Value of windows and doors</th>
<th>Space heating requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10 W(m²·K)</td>
<td>0.10 W(m²·K)</td>
<td>0.10 W(m²·K)</td>
<td>0.80 W(m²·K)</td>
<td>8 kWh/(m²·a)</td>
</tr>
<tr>
<td>2</td>
<td>0.15 W(m²·K)</td>
<td>0.15 W(m²·K)</td>
<td>0.15 W(m²·K)</td>
<td>0.80 W(m²·K)</td>
<td>13 kWh/(m²·a)</td>
</tr>
<tr>
<td>3</td>
<td>0.10 W(m²·K)</td>
<td>0.10 W(m²·K)</td>
<td>0.10 W(m²·K)</td>
<td>1.10 W(m²·K)</td>
<td>13 kWh/(m²·a)</td>
</tr>
<tr>
<td>4</td>
<td>0.175 W(m²·K)</td>
<td>0.15 W(m²·K)</td>
<td>0.15 W(m²·K)</td>
<td>0.80 W(m²·K)</td>
<td>15 kWh/(m²·a)</td>
</tr>
<tr>
<td>5</td>
<td>0.27 W(m²·K)</td>
<td>0.16 W(m²·K)</td>
<td>0.25 W(m²·K)</td>
<td>0.80 W(m²·K)</td>
<td>22 kWh/(m²·a)</td>
</tr>
<tr>
<td>6</td>
<td>0.10 W(m²·K)</td>
<td>0.10 W(m²·K)</td>
<td>0.10 W(m²·K)</td>
<td>2.20 W(m²·K)</td>
<td>28 kWh/(m²·a)</td>
</tr>
<tr>
<td>7</td>
<td>0.15 W(m²·K)</td>
<td>0.15 W(m²·K)</td>
<td>0.15 W(m²·K)</td>
<td>2.20 W(m²·K)</td>
<td>34 kWh/(m²·a)</td>
</tr>
<tr>
<td>8</td>
<td>0.27 W(m²·K)</td>
<td>0.16 W(m²·K)</td>
<td>0.25 W(m²·K)</td>
<td>2.20 W(m²·K)</td>
<td>45 kWh/(m²·a)</td>
</tr>
</tbody>
</table>

Note: Advantages and disadvantages of using triple glazed windows are discussed in detail in section ‘Windows & Doors’.

- **Option 1** - U-value 0.10 W/(m²·K) for all building elements combined with triple gazed windows with average U-value (including glazing and window frames) of 0.80 W/(m²·K) results in space heating requirement significantly below the standard required of 15 kWh/(m²·year).

- **Option 2** - (This is the option that has been used in the design of the prototype passive house in Ireland as part of these Guidelines), with U-value 0.15 W/(m²·K) for all building envelope elements combined with triple glazing. The results show space heating requirement below the Passivhaus Standard.

- **Option 6** - also a failure is the combination of U-value 0.10 W/(m²·K) for building fabric in combination with standard double glazed units.

- **Option 7** - U-values 0.15 W/(m²·K) for walls, roof and floor as the prototype house but with standard double glazing U-value 2.20 W/(m²·K) which comes way above the Passivhaus Standard.

Note: Results presented here are indicative only and should be used as starting point for specification of a passive house dwelling in Ireland. Meeting the Passivhaus Standard must be tested and verified with the PHPP software for the specific dwelling design.

Thermal Conductivity

Thermal conductivity (λ-value) relates to a material or substance, and is a measure of the rate at which heat passes through a uniform slab of unit thickness of that material or substance, when unit temperature difference is maintained between its faces. It is expressed in units of Watts per metre per degree (W/m·K), (Building Regulations Technical Guidance Document Part L, Conservation of Fuel and Energy 2005). Insulation materials for walls, roofs and floors vary in terms of thermal conductivity. Typical conductivities for different insulation materials are included below as well as the approximate thickness required in order to achieve a U-value of 0.15 W/(m²·K) and 0.10 W/(m²·K). (Table 4)

Typical insulation materials used in Ireland include mineral wool, polystyrene, polyurethane, polyisocyanurate, sheep wool and hemp. Different insulation materials suit different types of construction.
application and it is important to use the material best suited for the situation. For example, cellulose insulation is suitable for use in an open attic space where it will fill completely between ceiling joists in comparison with rigid insulation where there is a high risk of thermal bridging unless cut perfectly to fit snugly between the joists. Conversely, a high density rigid insulation is better suited under a floor slab compared with insulation that easily compress or are affected by moisture.

The U-value of the construction is determined by the conductivity of materials and components used from the internal surface to the external surface of the thermal envelope. Examples of typical construction methods and materials used for the prototype passive house in Ireland are illustrated later in Section 3.

Windows & Doors

The recommended approach to the design of a passive house is to have avoid excessive area of north facing glazing and place relatively large windows facing south or due south. This is in order to minimise heat losses through the north facing elevation, which receives no direct sunlight, while maximising 'free' solar heat gains on the south. An advantage of large windows is an increase in interior day light levels which in turn reduces the need for use of electricity for artificial lighting and also ensures a more pleasant natural light-filled living environment.

There is, however, a balance to be achieved between heat losses through the glazing and solar heat gains through the south/east/west facing windows. When designing a passive house, PHPP software should be used to calculate the heat losses and heat gains taking into account building orientation, areas of glazing and specific types of glazing so the optimum balance of glazing for each passive house design can be reached.

It has been illustrated above that the use of windows and doors with average U-values of 0.8 W/(m²K) can be combined with U-values for opaque elements of 0.15 W/(m²K) to comfortably achieve the Passivhaus Standard in Ireland. There are a number of advantages in using windows with average U-values of 0.8 W/(m²K) as well as highly insulated doors, principally the assurance of a comfortable indoor climate due to the lower cold radiation heat transfer at the surface of the glass. One will not sense a drop in temperature standing immediately adjacent to this standard of window, unlike the experience of standing next to a conventional double glazed unit with U-value, for example of 2.2 W/(m²K). An added benefit of using highly energy efficient windows and doors includes significant draught reduction due to the fact that they have typically two seals or gaskets (compared with conventional double glazed units which often have only one) as well as excellent sound insulation. Finally, natural convection which is driven by temperature difference between the inside face of the glass and the room interior is much reduced with which in turn will reduce cold air flows and thermal discomfort.

The sensitivity analysis for a passive house dwelling in Ireland (showed in Option 3), achieves the Passivhaus Standard yearly space heating requirement with extremely efficient double glazed windows with a U-value no greater than 1.1 W/(m²K). When used in a passive house, however, they must be used in conjunction with very low U-values for all other elements of the building envelope. This may negate any financial saving in not using more efficient glazing as well as compromise the thermal comfort level in the house. Typically triple glazed window units are used in passive houses in Central and Northern Europe. The Passivhaus Institut has certified a range of glazing and door units suitable for use in passive house buildings. Although it is not a prerequisite to use certified passive house products (http://www.passiv.de) in a passive house, choosing approved products means the validity of technical data has been tested and verified by an independent certifier. The principle characteristics and advantages of using triple glazed windows in a passive house are listed below, for both window glazing and frames:

Glazing

- Three panes of glass separated by special low-conductivity spacers eliminates the risk of condensation at the bottom of the glass in cold weather (which may lead to rotting of timber frames over time).
- High solar energy transmittance (g ≥ 50) which allows solar radiation to penetrate the glass and contribute towards heating of the dwelling.
- A low emissivity (low-e) coating on the inside of the outer two panes which reduces solar re-radiation back out through the glass. It should be noted that a ‘soft coat’ has slightly better U-value but a ‘hard coat’ glazing has higher solar transmittances.
- Insulating gases between the glass panes, typically argon or krypton, which help to reduce heat escaping through the glass.

Frame

- The frame must be well insulated and also be thermally broken. Even wood conducts heat and a thermally broken timber window frame will result in much lower heat losses than a solid one.
- There will typically be two weather gaskets on triple glazed windows used in a passive house dwelling, the primary function of the outer one being for weathering with the inner one serving to improve airtightness. The majority of these types of windows open outwards which is common place in Continental Europe.

Table 4: Conductivity of insulation materials and approximate thickness to achieve specific U-value for external walls. Source: MosArt Architecture.

<table>
<thead>
<tr>
<th>Insulation Material Type</th>
<th>Thermal conductivity W/mK</th>
<th>Thickness for U-Value of 0.15 W/(m²K)</th>
<th>Thickness for U-Value of 0.10 W/(m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysioxyuranean or polyurethane</td>
<td>0.023</td>
<td>145mm</td>
<td>220mm</td>
</tr>
<tr>
<td>Polystyrene, sheep wool</td>
<td>0.035</td>
<td>220mm</td>
<td>340mm</td>
</tr>
<tr>
<td>Cellulose, Hemp and Rockwool</td>
<td>0.04</td>
<td>250mm</td>
<td>400mm</td>
</tr>
<tr>
<td>Wood</td>
<td>0.13</td>
<td>825mm</td>
<td>1,250mm</td>
</tr>
</tbody>
</table>
however, there are models of inward opening windows being developed which will soon be available in the Irish market. One advantage of outward opening windows is that they don’t intrude in the room space which may be important in more compact dwellings.

- Triple glazing window frames are typically much wider and stronger construction than their conventional double glazing counterparts.
- Triple glazed windows with low-emissivity coating and insulated window frames will have improved U-values compared to double glazed windows, resulting in less heat loss. However with triple glazing the solar energy transmittance (gs), that is, the amount of solar energy entering through that glazing, is somewhat reduced compared to double glazing due to the effect of the additional layer of glass. The requirements of the Passivhaus Standard is to use glazing with minimum solar transmittance of 50% or higher.

The use of larger areas of glazing on the south elevation is helpful in maximising the amount of sunlight available in the short days of winter. It must be remembered, however, that highly energy efficient windows allow less daylight (visible light transmittance) into a building than a normal double glazing. In a passive house locating radiators beneath windows is simply not required as the heat load is transferred throughout the house via the mechanical ventilation system. This has the added benefit of enabling unobstructed use for placing furniture against all external walls.

Thermal Bridging

Thermal bridging (i.e. un-insulated joints between walls, floors/walls, ceilings/adjacent walls, windows/walls etc) are weak points of the building envelope and cause unwanted losses of energy which should be eliminated or significantly reduced to a degree that the associated heat losses become negligible.

A thermal bridge increases heat loss through the structure, and in some extreme cases this may cause surface condensation or interstitial condensation in the structure. Surface mould growth or wood rot may be the consequences of a thermal bridge. Typical effects of thermal bridges are:

- Significantly increased heat losses.
- Decreased interior surface temperature which may result in high humidity in parts of the construction.
- Mould growth cause by warm internal air condensing on cold surfaces.

All of the above situations can be avoided in houses built to the Passivhaus Standard. The Passivhaus Standard for linear thermal transmittance (ψ) should not exceed 0.01 W/(mK). This requires the building designer to identify and locate all potential thermal bridging in the construction, careful specification and detailing of those elements providing where possible a continuous layer of insulation, as well as care being taken to execute those elements on site as per design details.

The risk of internal condensation is dramatically reduced. Source: MosArt Architecture.

The quantity which describes the heat loss associated with a thermal bridge is its’ linear thermal transmittance (ψ). This is a property of a thermal bridge and is the rate of heat flow per degree per unit length of bridge that is not accounted for in the U-values of the plane building elements containing the thermal bridge.

Source: SEI, Dwelling Energy Assessment Procedure (DEAP) 2005 edition, version 2, pp.55
bridging can be tested and verified in the PHPP software as the design of the passive house building is being developed.

Structural Air-Tightness and Draught-Proofing

Building an airtight or leak-free structure is imperative to achieving the Passivhaus Standard. If there are gaps in the building structure then uncontrollable amounts of cold external air can infiltrate the building. Achieving a high level of air-tightness eliminates cold draughts and associated comfort losses. It also prevents condensation of indoor moist, warm air penetrating the structure, and possible structural damages due to decay, corrosion and frost.

Air-tightness is achieved by careful application of appropriate membranes and tapes or wet plastering in concrete construction within the building envelope. A great deal of attention must be paid to detailing and workmanship in order to ensure that the airtight layer is continuous all round the building, especially around junctions between walls and floors, roof, windows, doors, etc. Penetrations of the airtight layer by mechanical and electrical services must be properly sealed.

The air-tightness of a building can be accurately measured by carrying out a blower-door test. The test involves placing a powerful fan suspended in a canvas sheet within a door opening and operating the fan at very high speeds thereby creating either negative or positive pressure within the house. By sucking air out of the house, for example, a negative pressure is created with the result that external air will be sucked in through any gaps or cracks in the building envelope. The pressure used for such tests is 50 Pascal which can be accurately set by the blower door equipment.

When undertaking the test it is usually quite easy to identify major leaks due to the presence of a strong draught which can be felt by the hand or, for smaller leaks, can be detected by a thermographic camera. The cause of these draughts can then be sealed with appropriate materials as the test is being undertaken. It may also happen that the leaks in the envelope are very minor and therefore difficult to locate. In these situations it is typical to reverse the direction of the fan and suck air into the house putting it under positive pressure. Odorless smoke can then be released into the building and leaks can be observed from the outside where the smoke appears through the envelope. It is important to notify the fire service if you are carrying out such a test in case it is mistakenly reported as a house fire by passers by.

The Passivhaus Standard is reached when there are less than or equal to 0.6 air changes per hour @50Pa pressure.

The most critical issue regarding testing for airtightness is timing during the building process. It is important that remedial measures can be carried out in order to remedy any leaks or cracks. The test should be carried out before second fix carpentry, for example, when there are no skirting boards or window boards fitted and where the junctions covered by such materials are still accessible and can be sealed. The test should also be carried out after all mechanical and electrical services, that need to penetrade the building envelope, have been installed. Otherwise, installing such services after the test could severely compromise the airtightness of the building.

In a typical Irish house built in accordance with building regulations TGD Part F 2002 the method in which habitable rooms are ventilated is usually via a hole in the wall or ventilator in the windows of 6,500mm² fitted with a controllable grille. Such means of ventilation can result in large amounts of cool external air infiltrating the building depending on wind speed and pressure. In a passive house, on the other hand, the supply of fresh air is provided by a whole house mechanical ventilation system with heat recovery which negates the necessity for openings in the wall or windows. Thereby draughts are eliminated and structural airtightness is not compromised.

In developing the building design it is very important to anticipate differential movement and decay of adhesives and chemical bonds by detailing junctions which will assist in maintaining an
There are two measurements used to define airtightness, namely cubic metres of air per square metre of external envelope per hour (m³/m²h) or air changes per hour (ach). While the measured result for the former is generally 20% greater than that of the latter, the difference is practice greatly depends on the building form.

There is no optimal ratio of glazing to floor area that can be used as a rule of thumb in deciding what proportion of a given façade should be glazed. The area of glass has to be determined as part of the design verification procedure using the PHPP software.

Internal Heat Gains
A passive house is very efficient at utilising ‘free’ internal heat gains from domestic household appliances, kitchen and utility equipment, electronic equipment, artificial lighting, and occupants. Heat losses from stoves or boilers also contribute towards the overall space heating requirement as long as they are positioned within the building envelope. Occupants of the building also contribute to the heat load - a human continuously emits 100W of heat when stationary. A family of five persons, therefore, can emit 0.5KW of heat. This may seem like a small amount but it equates to approximately one third of the total space heat load for the prototype passive house presented in Section 3.

Risk of Overheating
Placing extensive areas of glass on the south facing façade in a well insulated and air-tight dwelling may lead to overheating in warm sunny days. The PHPP software will alert the designer to any risk of overheating by calculating the frequency of overheating expressing this as a percentage of the year in which the internal temperature in the house rises above 25°C. If frequency of temperatures over the comfort limit of 25°C exceeds 10% of the year, additional measures for reducing overheating should be included in the dwelling. To prevent uncomfortable indoor temperature in a passive house dwelling it is recommended to specify shading devices (blinds, overhangs or awnings, etc.) which allow low sun to enter the home in winter but prevent the high sun entering in summer.

In the first Irish passive house in Wicklow shading was not in place on the south facing glazing during the first summer and the house did overheat. A balcony was installed ahead of the second summer, which significantly reduced the frequency of overheating. In mid-summer when the daylight hours are long the sun only enters the building later in the day while during winter when the daylight hours are short the low sun completely illuminates the entire interior of the building.

In the temperate climate in Ireland where external temperature rarely exceeds 25°C, the risk of overheating...
should be avoided by careful consideration of shading devices, provision of openings for natural ventilation in combination with thermal mass inside the dwelling (exposed concrete floor; masonry wall, etc.). In some cases the mechanical ventilation system could be used to distribute fresh air throughout the building by switching to a ‘summer bypass’ setting. This however should be avoided where possible as the ventilation system will consume electricity resulting in increased primary energy. The dwelling designer should employ ‘passive’ cooling strategies to minimise overheating.

2.2.2 Passive House Building Systems

As explained earlier a passive house does not need a conventional space heating system of radiators or underfloor heating to maintain a comfortable indoor climate. Instead, typically, the following building services are required in a passive house:

- Mechanical ventilation system with heat recovery which provides most of the space heat requirement.
- Back-up system capable of heating the air passing through the dwelling via mechanical ventilation. Typical fuel sources for the back-up system include biomass, gas, and in some instances electricity (for example ‘green electricity’ from renewable sources). Since the demand for space heating in a passive house dwelling is very low, the back-up system is used to provide hot water, either throughout the year or during winter if a solar water heating system is used during summer.

Each of these items is dealt with separately in greater detail below.

Given the lengths to which the designer and builder go to in terms of ensuring a highly insulated building envelope, excellent air-tightness and minimal thermal bridging, it is important that the building services in a passive house are as energy efficient as possible. This is especially critical in the case of the mechanical ventilation heat recovery system. Therefore, the required efficiency of the mechanical ventilation system with heat recovery for a passive house dwelling is 75%. It is also very important to consider comfort, health and safety issues in the design of the building services for a passive house, ensuring for example that the back-up heating system is adequately sized to deal with extreme weather conditions; that filters in the ventilation equipment are replaced regularly and that there is a fresh air supply for any combustion devices such as a boiler. These and other issues are dealt with in greater detail below.

Mechanical Heat Recovery Ventilation (MHRV)

An airtight house requires a well-designed mechanical ventilation system to provide good indoor air quality. A passive house is ventilated using a mechanical system which incorporates air to air heat recovery (mechanical ventilation heat recovery, or MVHR).
Exhaust air is extracted from rooms that typically produce heat, moisture and unwanted smells such as kitchens and bathrooms. Before this air is expelled to the outside it passes through a heat exchanger where the heat is transferred to the incoming fresh air, thereby eliminating the need to completely heat the fresh air as it enters the building. It is important to highlight that the stale exhaust air and clean fresh air do not mix in the heat exchanger and therefore there is no risk whatsoever of what might be referred to as ‘sick building syndrome’. Rather, the stale air and clean air is channelled through closely spaced but separate narrow sleeves in the core of the heat exchanger.

The benefits of having a whole-house mechanical heat recovery ventilation system (MHRV) are many, including:

- Constant supply of the correct amount of fresh air to all habitable rooms thereby reducing CO2 levels and removing the cause of stuffiness and tiredness.
- Simultaneous extraction of moisture-laden air from bathrooms, utility rooms and kitchens as well as ventilating noxious gases and unwanted smells if present.
- A lowering in humidity levels reducing mould and fungus that may appear over time and decreasing dust mite levels.

System Efficiency

The efficiency of the heat exchanger in the MHRV determines the amount of heat that can be recovered from the exhaust air and, therefore, has a very significant influence on the additional space heating that may be required in a passive house. The aim is to use the warm exhaust air to raise the temperature of the cool fresh air to provide for thermal comfort all around the house. On a night where outside temperatures are below freezing, the fresh air should be raised to, for example, 18°C, having passed through the MVHR. The efficiency of sensible heat recovery should exceed 75% for the nominal range of flow rates specified for the unit when measured in terms of the supply-air side temperature ratio as described in EN 13141-7:2004. Specifiers and designers should be wary of products claiming extraordinary efficiency rates of 95% or higher. The safest route is to install equipment that has been independently tested and verified by such bodies as the Passivhaus Institute.

The graph above is based on actual testing of the first Irish passive house in Wicklow. It illustrates, for example, how mechanical ventilation ensures good indoor air quality by removing the high concentrations of a tracer gas that was inserted into the house under test conditions. Source: UCD Energy Research Group.

Recommended Ventilation Rate

According to the Passivhaus Institut, the appropriate air change rate for dwellings is between 0.3 and 0.4 times the volume of the building per hour, with a general recommendation of leaning toward the lower rate. This maintains high indoor air quality while ensuring a comfortable level of humidity and maximizing energy savings.
The PHPP software suggests that 30m³ per person per hour should be provided to dwellings to ensure good air quality. These two measurements can be used to choose an appropriately sized machine for different dwelling designs. Taking the prototype house presented later in Section 3 as an example, an occupancy of 5 persons would require 150m³ of fresh air delivered to the house per hour. In terms of extract, the PHPP software uses the following rates for different room types as default values, kitchen = 60m³/h, bathroom = 40m³/h, shower = 20m³/h and WC = 20m³/h. In the prototype house these total 140 m³/h which is close to the supply volume which will ensure that the whole house system will be balanced. The supply and extract volumes can be accurately set by using a digital anemometer and adjusting the valves on the vents in each room as required.

Adjustment of Fan Speed and Exchange Rate

Most MVHR machines have different settings for different circumstances. These are often referred to as a ‘party’ setting, where there are a lot of people in the house and where additional fresh air is required, and ‘holiday’ setting, where the house is being left vacant and the flow of air is reduced. The former of these settings will use more energy and also decrease the level of humidity whereas the latter will use less energy and perhaps lead to an increase in humidity.

It is not advisable to constantly run the equipment on the lower setting just to save energy when the house is occupied. MVHR machines uses surprisingly little energy given the important role that they play in the passive house. The PHPP software uses standard value 0.45Wh for every m³ transported air software in the calculation of electricity due to MHRV. When designing a passive house in Ireland the specific fan power should be carefully considered as the electricity consumed for fans has direct impact in terms of primary energy performance and energy labelling, the Building Energy Rating (BER), recently introduced to Ireland. Therefore, specific fan power for fans should be less than 1W/l/s.

Winter and Summer Mode

There are generally two ventilation modes in a passive house: Summer Mode and Winter Mode. In winter, the MHRV uses the heat in the exhausted air to warm the incoming fresh air. In summer, a bypass in the equipment can be set to open automatically (controlled by thermostats) such that the incoming fresh air is not heated. Alternatively in summer natural cross ventilation may be used and the MHRV system can be switched off.

Insulation and Positioning of Duct Work and Vents

It is very important to adequately insulate the supply air ducting so that there is minimal loss of temperature in delivering warm air around the house. The thickness of insulation generally used in passive houses is between 6cm and 10cm for ductwork. It is also preferable to locate the ducting within the thermal envelope and to keep pipe runs as short as possible by ideally positioning the MVHR unit in the centre of the house. This requires careful planning at a very early stage of building design.

Vents are normally placed in the ceiling but can also be placed in the wall if necessary. The air inlets are typically designed to spread the air horizontally across the ceiling, minimizing downward drafts. There should be a gap either under or over the door of each room to enable the easy movement of air from one room to the next. If doors are fitted tight without such a gap, rooms with exhaust vents would be under negative pressure and rooms with supply air under positive pressure.

Noise

Fan and valve noises can be almost completely eliminated by sound control measures (e.g. vibration isolation mounts, low air speed and acoustic lining in ducts). The grilles on vents generally guide incoming air along the ceiling from where it uniformly diffuses throughout the room at velocities that are barely perceptible. If the ventilation equipment is operating on a high setting (‘Party Mode’) the noise of the equipment and the air flow may be more noticeable. MVHR machines are generally housed in a well insulated...
casing and noise should not be a critical issue.

Maintaining Good Air Quality

It is important that attention is paid to regular replacement of air-filters for both incoming and exhaust air. Filters are used not only to provide clean air for the occupants but also to ensure that the heat exchanger is not clogged with dust and other matter. If the filters are not regularly replaced (for example every six to twelve months) and they themselves become clogged with dirt the MHRV will have to work harder to provide the same volume of air to the house, thereby increasing the speeds of the fans and, ultimately, using more energy. In countries where this system is relatively new, occupants may not be aware of this maintenance need and indoor air quality may suffer as a consequence. Equipment differs with respect to the types of filters used, some have to be replaced while others can be washed and reused.

Sometimes the extractor hood in the kitchen is connected to the MHRV equipment to extract kitchen smells and to use the waste heat from cooking to warm the incoming fresh air. In such instances, it is very important that the hood is fitted with a high quality filter that can easily be cleaned or replaced in order to prevent the built up of grease in the ducting system which could be a fire hazard.

What happens in the event of a power failure?

If there is a loss of electricity (and the dwelling has no back-up generator) the ventilation system will stop working and the supply of fresh air will be cut off. If power is lost for a short while (for example a few hours), then there is likely to be no noticeable difference in indoor air quality. If the loss of power is prolonged, the simple solution is to open the windows and to create natural cross flow ventilation through the building.

Back-up Heating System

As previously highlighted in these guidelines, space heating requirement in a passive house is so low that there is no need for a traditional space heating system. The optimal way to transfer the small amount of required heat throughout the house is through the mechanical ventilation system. This section of the guidelines will provide an overview of the typical back-up heating systems used in passive houses to provide thermal comfort.

Space heating demand in a passive house is typically met through passive solar gains (40–60%), internal heat gains (20–30%) and the remainder (10–40%) needs to be provided from building systems.

The PHPP software will accurately predict the following two measurements for each passive house design:

- **Annual Space Heat Requirement** - this measures the amount of energy that is needed to maintain a comfortable indoor temperature, specified in kilowatt hours per square metre of treated floor area per year, or kWh/(m²·yr).

- **Heat Load** - this measures the capacity of the space heating system required to maintain comfortable indoor temperatures at any one time, specified in Watts per square metre of treated floor area, or W/m².

For the prototype house the annual space heat requirement is 15 kWh/(m²·yr) equating to approximately 1,650 kWh over an entire year (the house measures 110 m² in treated floor area). This would equate to 155 litres/year of oil, 160 m³/year of mains gas or 350 kg/year of wood pellets (in bags) at a cost of approximately €92/year when using oil, €55/year when using gas (without standing charges for gas or €345/year with standing charges) or €97/year when using wood pellets. Unit price: heating oil 5.62c/kWh; mains gas 3.39c/kWh standing charges €256/year; wood pellets - in bags 5.92c/kWh. Source: SEI, Dwelling Energy Assessment Procedure (DEAP) 2005 edition, version 2, Manual pp. 84.

The heat load, on the other hand, is approximately 1,800 W, or just 1.8 kW. This amount of energy could be provided by a very small stove / heater / boiler compared to what might be typically required in a family home.

The most common method of ‘heating’ in a passive house is by post-heating the fresh air after it has already been warmed by the exhaust air in the MVHR.
There are a number of ways in which the temperature of the air can be boosted, including those listed below:

- Water to air heat exchanger.
- Compact unit with electrical heat pump.
- Compact unit with natural gas.

The first two of these is explored in outline below. The compact unit with natural gas, while used in Central Europe is virtually unheard of in Ireland and would have to be approved for use by the appropriate authorities.

Water to Air Heat Exchanger
This method involves using a heating device placed immediately on the fresh air supply outlet of the MVHR. There is a small radiator inside this device and it is heated by hot water connected to the domestic hot water tank. If the house needs additional heat (which is determined by a thermostat) then hot water is circulated through the device, hence the appropriate title of ‘water to air heat exchanger.’ Once the house has reached the programmed temperature, the hot water stops circulating and the air is no longer heated. The water in the domestic hot water (DHW) tank is heated, in turn, by using a number of energy sources including a stove or boiler (for a larger house) in combination with solar hot water panels. The principle advantage of this system over the compact unit system described below is that when fueled by a combination of firewood and sunshine it is carbon neutral.

Compact Unit with Electrical Heat Pump
This system is so-named as it incorporates all of the technology required for a passive house in a relatively small unit, namely the MVHR, the DHW and the heating power for the home, in this case powered by an electrically powered heat pump. It is therefore very suited to smaller homes where space might be limited for large tanks, stoves and storage for wood. Compact units are becoming more widespread in use in passive houses built in Central and Northern Europe.

Integrated controls for heating in a Passive House
Heating systems in Ireland have traditionally been very simple, perhaps the most common boiler based systems using a timer and a cylinder thermostat, sometimes even room thermostats been absent. New building regulations Part L (2005) recommend minimum levels of control, installing equipment to achieve the following:

- Automatic control of space heating on the basis of room temperature;
- Automatic control of heat input to stored hot water on basis of stored water temperature;
- Separate and independent automatic time control of space heating and hot water;
- Shut down of boiler or other heat source when there is no demand for either space or water heating from that source.

Additional control features can be incorporated to a heating system so the overall system performance improves. One example is the ‘weather compensation’ feature, which is the ability to...
adjust the output of the system based on the measured external temperature. The main advantage of using weather compensation is that the heating system closely monitors external temperature trends and adjusts the output accordingly. If, for example, the external temperature starts to drop rapidly, the system can ‘anticipate’ that the dwelling may come under pressure to maintain its current internal temperature and can verify whether there is sufficient power to generate the back-up heat that might be required.

The preferred internal temperature can be set using an internal thermostat. If the internal temperature goes below the thermostat setting, the system will automatically start to heat the fresh air passing through the ventilation equipment. The principle function of the heating control system is to ensure that there is always sufficient heat in the buffer tank to deliver the heat load required to maintain the comfort levels set by the occupants. In the case of the Out of the Blue house, if there is insufficient heat in the buffer tank, and the solar input can not provide the heat demand at that particular time, the pellet stove can be ignited automatically to provide the back-up required. The pellet stove will then cut out when there is sufficient energy available. A similar control system is found in the Compact Units, except that a heat pump is used instead of a pellet stove.

The amount of heat delivered to the fresh air by the heat exchanger is regulated by the internal and external temperatures. The control system is usually set up to deliver a relatively high heat load if the temperature outside is very cold, or alternatively a low heat load if it is not too cold.

It would also be possible to use an ‘instantaneous’ system eliminating the need for a large buffer tank. Such systems do not typically suit the use of a pellet boiler, however, as the boiler would have to switch on and off for short periods of time to maintain an even temperature in the house.

Individual Room Temperature Control
Different rooms may have different temperatures due to solar gains, occupation and internal heat loads.

Room based temperature controls for temperature differentiation between different rooms may be necessary if individual comfort requirements are set for different rooms. In a centralised ventilation heating system, however, the supply air temperature is constant for the whole house and this would be typical for most houses built to the Passivhaus Standard.

Domestic Hot Water Production
As in any type of dwelling, the passive house requires a system that provides domestic hot water (DHW). With space heating, it is important that the system is energy efficient, well controlled and has an adequate capacity to meet demand. Generally the DHW system in a passive house is combined with a heat source such as a wood stove, solar thermal collector, compact unit or heat pump for space heating. Most passive house examples encountered have utilised solar thermal collectors as they reduce the use of primary energy and CO2 emissions. It is important to note, however, that the Passivhaus Standard is achievable without solar based water heating. The introduction of Building Energy Rating system as an indication of the energy performance of dwellings in Ireland is likely to increase the installation of solar technology as it influences the energy rating of a home, and in particular CO2 emissions.

Domestic Water Heating - Solar Input
It is reasonable to expect that an optimized solar based system (flat plate of 5–7m² area or evacuated tubes) will produce up to 60% of total annual hot water demand the Irish climate and they have a relatively shorter pay back period when taking into account available grants, in comparison to other renewable energy technologies such as wind turbines or photo voltaic panels. In Ireland the amount of solar irradiation received each year is approximately 900–1,150 KWh/m². This is the equivalent of close to 100 litres of oil. Many people would be surprised to learn that Dublin receives the same amount of irradiation as Paris.

In terms of specifying a solar collector system, the following outline guidance should be considered:

- The optimal orientation is directly due south and deviation from this will reduce the contribution of the collectors to DHW production. In places where there is no south facing roof, additional panels over the m² area which might otherwise be needed can be fitted to east or west facing roofs.
- The optimal tilt of the solar panels to meet approximately 50% of the annual heating demand for DHW is approximately 45 degrees (at a pitch greater than 45 degrees the potential annual output is compromised somewhat).
- There are two types of solar collectors typically used in Ireland, flat plate panels and evacuated tubes. A comparison of the performance of these types, based on 5m² collector area, along with consideration of orientation and angle of incidence is provided here. The calculation was developed for the prototype passive house using the calculation methodology for solar water heating in Dwelling Energy Assessment Procedure DEAP 2005, version 2.

Three different inclinations of solar panels (30°, 45°, 60°) and three different orientations were calculated, with the following specification: standard number of 3.6 occupants according to DEAP assumption; water storage tank 300 lit, with 150 lit dedicated to solar, and 50mm factory insulation; with thermostat control.

- As a general rule of thumb, the area of solar panels is roughly 1 to 2m² of collector area per person. The system should be capable of providing up to 50 litres of DHW per person per day in season.
- In terms of sizing a solar tank, a minimum of 80 and preferably 100 litres storage per m² of collector should be provided. In a typical Irish home this could mean installing a tank of between 300 and 500 litres capacity. It is important to use a proper solar water tank which is very well insulated. Insulation of hot water pipes is also important for energy conservation, using at least 1 time and preferably 1.3 times the pipe diameter.
The 40% or more of DHW needs that are not provided by solar energy can be met by several means including biomass boilers or stoves, immersion heaters or natural gas. An outline of the first of these is provided below. It must be remembered that space heating in a passive house is often provided by using hot water to heat the air passing through the ventilation system. In such cases, hot water production is essential in the heating season when solar panels on the roof will not be sufficient to meet the demand for heating the hot water. Accordingly, many passive houses will have a biomass stove burning either natural logs or wood chip or pellets. The advantage of the latter two of these is that they are more easily automated so that they fire up and switch off in the same way as a conventional gas or oil burner.

The following issues should be remembered when considering installing a wood stove or boiler:

- The equipment must be sized appropriately to the heat load of the house. This will be defined by the ‘Verification page’ in the PHPP software. Taking the prototype house presented in these guidelines, a stove of 3kW output would be sufficient for all space heating and DHW needs.
- A combustion air supply must be provided to any stove or boiler in a passive house bearing in mind the level of airtightness that has to be achieved. The provisions of an air supply and flue for stoves or boilers will generally not adversely impact on airtightness or the balancing of ventilation flows due to the ‘closed’ nature of their construction. Air required for combustion is drawn in through a relatively small diameter duct and expelled through the flue.
- A stove or boiler that directs most of the heat output to the DHW tank is essential if the hot water is to be used to heat the ventilation air. A model that simply radiates all the heat into the space in which it is located cannot generally be used for whole house heating.
- Wood (whether logs, chipped or in pellets) is bulky and a considerable volume is required for storage especially if it is purchased in bulk to keep costs to a minimum.
- Most wood stoves are highly efficient (up to 90%) and when burning pellets there is very little ash remaining following combustion. A flue will be required to take exhaust gas emissions safely away from the house, as with any typical stove.

Primary Energy, in kWh/year:
This includes delivered energy, plus an allowance for the energy “overhead” incurred in extracting, processing and transporting a fuel or other energy carrier to the dwelling. For example, in the case of electricity it takes account of generation efficiency at power stations.

Source: SEI, Dwelling Energy Assessment Procedure (DEAP), 2005 version 2, pp. 28.

Delivered Energy, in kWh/year:
This corresponds to the energy consumption that would normally appear on the energy bills of the dwelling for the assumed standardised occupancy and end-uses considered.

Source: SEI, Dwelling Energy Assessment Procedure (DEAP), 2005 version 2, pp. 28.

Domestic solar water heating - solar input (flat plate collectors and evacuated tube) for the prototype passive house (described in Section 3), calculated with the Dwelling Energy Assessment Procedure DEAP 2005 version 2.
Source: UCD Energy Research Group.

<table>
<thead>
<tr>
<th>Tilt of collector</th>
<th>Solar Input kWh/year</th>
<th>Tilt of collector</th>
<th>Solar input to demand ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>South</td>
<td>SE/SW</td>
<td>E/W</td>
</tr>
<tr>
<td>30°</td>
<td>1264.9</td>
<td>1246.3</td>
<td>1191.2</td>
</tr>
<tr>
<td>45°</td>
<td>1264.2</td>
<td>1240.4</td>
<td>1167.9</td>
</tr>
<tr>
<td>60°</td>
<td>1248.5</td>
<td>1221.3</td>
<td>1137.0</td>
</tr>
</tbody>
</table>

5 square meters of FLAT PLATE collectors (η=0.75 and a1=6) No obstructions:

5 square meters of EVACUATED TUBE collectors (η=0.6 and a1=3) No obstructions:
all electrical systems is crucial to meet this challenging requirement. This is emphasised with the fact that the primary energy factor for electricity taken in the PHPP software (as well as in the DEAP, Dwelling Energy Assessment Procedure) is 2.7. Therefore 1kWh electricity used in a passive house accounts for 2.7kWh of the primary energy.

When designing a passive house, the PHPP software is used to calculate the electricity balance. The first step is to calculate the electricity requirement in the house including all household appliances and lighting. In order to achieve the Passivhaus Standard it is necessary to specify refrigerators, freezers, cookers, artificial lighting, washing machines, dryers, etc. with the highest energy efficiency available on the market (i.e. category A energy rated household appliances). The second step is calculating the auxiliary electricity requirement, in which electricity consumption is specified for mechanical ventilation system fans and controls, DHW circulation pumps, and any other present in the dwelling. Calculation results are presented in primary energy kWh/(m²year) and included in the PHPP ‘Verification page’.

2.3 Energy Balance Calculations and Passive House Specification

2.3.1 PHPP Software and Applications

An introduction to the Passivhaus Planning Package (PHPP) was provided at the beginning of this chapter within a discussion of the building design process for passive houses. PHPP is a software package based on a series of elaborate and interlinked Excel data sheets which collectively allow building designs to be verified against the Passivhaus Standard. The latest version of the PHPP software can be purchased for a nominal fee from SEI Renewable Energy Information Office. The verification requires the input of very specific and detailed data about the design, materials and components into the PHPP spreadsheets and is then related to the climate data for the region in which the house would be built. The validity of the result from this process is of course highly dependent upon the validity of the data entered.

Some of the principle datasheets included in the software are listed below, along with their main functions:

- **Climate data** - it is possible to choose the climate which the passive house is being designed for which has a significant impact on the U-values required to achieve the threshold annual heat requirement.

- **Verification** - this sheet collates the results of the overall evaluation of the building including the Space Heating Requirement, Specific Primary Energy Requirement, Heat Load and Frequency of Overheating. The user can see at a glance on this sheet whether or not the building can be certified as a Passive House.

- **U-value** - this sheet enables the assessor to specify the construction of all the opaque (i.e. does not include windows) elements of the building envelope for the purposes of calculating the U-value of those elements. The sheet requires the input of the lambda value of the building materials proposed as well as their thicknesses and the proportion of insulation occupied by structural elements.

- **Windows** - the orientation and size of all windows is entered into this sheet, along with the U-values of the glass and frames as well as other technical specifications which have discussed earlier in this chapter.

- **Annual Heat Requirement** - this value is calculated by subtracting the heat losses through transmission and ventilation from the total solar and internal heat gains. The Annual Heat Requirement must be less than 15kWh/(m²year).

- **Heat Load** - the building’s heat load is based on energy balance calculations estimated by subtracting the minimum solar gains and internal heat sources from the maximum transmission and ventilation heat losses.

The PHPP software is very comprehensive and detailed and therefore requires some training prior to embarking on practical application to a real project. However, the software is also quite user friendly and the Verification page enables the user to check whether or not such thresholds such as Space Heating Requirement are met. In the event that the key Passivhaus Standard criteria are not met, for example, the assessor will firstly have to check to see if there are any fundamental errors in terms of data entry. If this is not the cause of the problem, then the building will likely have to be modified in order to achieve the required standards. This will typically involve improving the U-values of the building envelope, or altering the proportion and orientation of glazing.

Extracts from the PHPP software are included later in Section 3 pertaining to the prototype passive houses.

2.3.2 Passive House Certification

At the time of writing these Guidelines, a passive house in Ireland can be certified by the Passivhaus Institut in Darmstadt, Germany (http://www.passiv.de) or certifying body approved by the Passivhaus Institut. For further information on certification of passive houses in Ireland contact the SEI Renewable Energy Information Office or the Passivhaus Institut directly. The evaluation criteria for the certification (Source: PHPP 2007, pp.23) is:

- Specific Space Heat Demand max. 15kWh/(m²year)
- Pressurisation Test Result n50 max. 0.6ac/h
- Entire Specific Primary Energy Demand max. 120kWh/(m²year) including domestic electricity.

The above criteria have to be verified with the Passive House Planning Package 2007 and the required list of documentation for the passive house quality approval certificate, construction drawings and technical specification with product data sheets, must be submitted to the certifying party (including PHPP calculations). Also, verification of the airtight building envelope according to DIN EN 13829, a record of adjustment of the ventilation system, declaration of the construction supervisor and photographs of the
complete building must also be submitted. Upon examination of received documentation the applicant receives the results of the examination from the certifying party.

A wider European passive house certification scheme has been developed within the Intelligent Energy Europe project (2005–2007) “Promotion of European Passive Houses, PEP” (http://www.europeanpassivehouses.org). This certification scheme is applicable to ‘an emerging market scenario’ (i.e. countries with a small number of passive house buildings), aims to ensure that the design of a particular passive house can deliver the specific energy requirements in accordance with the Passive House Planning Package (PHPP) and confirm the air-tightness of the completed building. This certification scheme involves the verification of the ‘as built’ design (i.e. that reflects the actual construction, incorporating any modifications made during construction) in accordance with the Passive House Planning Package (PHPP) and confirmation of the air-tightness of the completed building by a fan pressurization test performed in accordance with EN 13829.

Since the above assessment criteria apply to the ‘as built’ design details and the completed building, there is a significant risk that any non compliances due to fundamental errors will be difficult to correct when the building is complete. It is therefore recommended that the design is checked against the PHPP before construction is started to confirm that the criteria for the specific heating and primary energy requirements are met; the construction on site should be checked to ensure that the dwelling design has been realised; air permeability measurements are recorded during the construction process so that air leakage problems can be identified and remedied while access to the air-tightness membranes etc is still available.

Since the actual performance of the building is very dependent on the correct operation and maintenance by the occupant, it is recommended that adequate written information and instructions are provided to the occupants. Also, an approach to certification of products and technologies used in passive house designs has been developed. (Source: PEP Promotion of European Passive Houses, passive house building certification, http://www.europeanpassivehouses.org).

Lifestyle Issues

It is a very common misconception that windows cannot be opened in a passive house. They can indeed be opened but they don't have to be opened. In a passive house the ventilation system ensures that a constant controlled amount of fresh air is circulated around the house so a stuffy or uncomfortable atmosphere is avoided. If the occupants would prefer to have the windows open at night or provide natural cross ventilation during a hot summer's day then it is entirely possible to open whatever windows or doors one chooses. The MVHR should be switched off if there are a lot of windows or doors being left open as it would be an unnecessary waste of electrical energy.

Living in a passive house encourages a greater interest in and awareness of weather patterns and the impact they have (or don't have) on indoor climate. The passing of cloud cover brings with it instant brightness and rising temperatures on the display panel for the solar collectors. A very hard frost will sometimes leave a veil of ice crystals on the outside pane of the glazing which rapidly melts in the morning sunshine. Extremely cold clear weather usually means that the back-up heating is not required during the day due to the high levels of solar irradiation available. Dull muggy days, on the other hand, while not especially cold, may well require the use of the pellet stove due to the lack of sunlight. Windows may have to be flung open to cool the house on New Years Eve night depending on how many friends and neighbours you manage to attract to join the celebrations!

As an illustration of the indoor temperature comfort, monitoring results of the room temperatures in the passive house in Wicklow and site measured temperature is shown on page 26. The graph represents measured average indoor and outdoor temperatures from January 2006 to November 2007.
The above diagram illustrates temperature variation in different parts of the house and cooler average temperatures in the first heating season (early 2006) compared to the second and third heating seasons (late 2006/early 2007 and late 2007 respectively). The reasons for these variations are interesting and warrant some elaboration, below:

- The three coolest rooms (‘office’, ‘garage’ and ‘bathroom down’) are each on the north side of the building, receive no direct sunlight during the winter months and are very infrequently used compared to the remainder of the house. The first two of these spaces have three external walls and so are more prone to heat losses compared with the rest of the house.

- The three warmest rooms (‘kitchen’, ‘main bedroom’ and ‘stairs’) all open out to the south of the house and so receive the maximum amount of solar gain in winter. Furthermore, they are occupied for significant parts of the day and / or night.

- In the first few months of 2006, the only back-up heat source in the house was a pellet boiler in the sitting room. This alone was insufficient to heat the entire house as its direct output into the room is just 2kW. As a result, those rooms on the northern side of the house were below thermal comfort levels for the first few months of 2006. This went largely unnoticed by the family due to the fact that the rooms in question are not used.

- In the autumn of 2006, a water-to-air heat exchanger was fitted to the MVHR equipment which enabled heating the fresh air as it passes throughout the house. This was actively used for the first time in December 2006 which resulted in raising the temperatures in all rooms (even those three on the north side) to well within the normal comfort level. In late 2007 the temperatures have improved yet again.

- There is still in evidence a temperature gradient (increasing in temperature) from north to south and from first floor to ground floor. The specification of materials and very high quality build creates a strong sense of living in a well-built house that will last the test of time. The heavy doors and windows close with a reassuringly solid ‘clunk’ and keep out draughts and reduce external noise. The walls are thick and substantial and are packed full of insulation to keep out the cold and the heat in. There is no condensation on the internal glazing early on a cold morning.
The health aspects of living in a mechanically ventilated house are also readily apparent, with no lingering odours, little or no condensation in washrooms after showering and an overall sense of high indoor air quality throughout. Changing the filters on the ventilation system is always an eye opener - seeing what dust and dirt is taken out of the incoming air and what is extracted from the indoor air.

Living in a house that has a low carbon footprint can bring about other changes in lifestyle that are positive for the environment, including growing your own food and reducing the impact of travel whether by car or by plane. Raising children in a passive house will also bring about positive change for the next generation who will expect to improve even further on what their parents achieved.

Perhaps the overall lifestyle benefit of living in a passive house is that it provides very high levels of overall comfort without compromising the environment and at a fraction of the cost of living in a so-called 'normal' house.

References

1 EN 13141-7:2004, Ventilation for buildings/ performance testing of components/products for residential ventilation. Performance testing of a mechanical supply and exhaust ventilation units (including heat recovery) for mechanical ventilation systems intended for single family dwellings.

2 Thermal comfort is defined in British Standard BS EN ISO 7730 as: ‘that condition of mind which expresses satisfaction with the thermal environment.’ It is affected by the key environmental factors as air temperature, radiant temperature, air velocity and humidity.
SECTION THREE

Passive House Prototype for Application in Ireland
This section of the guidelines demonstrates the practical application of Passivhaus Standard to a prototype house designed especially for this project and suitable for the mass housing in Ireland. The house type demonstrated is a semi-detached two storey house with a floor area of approximately 110m². The house is depicted in plan and elevation below. The house is typical in most aspects of its design, comprising three bedrooms upstairs (including one ensuite and family bathroom) and a living room, dining room, kitchen/utility and wheelchair accessible WC down-stairs. There are also some non-conventional elements included, including a double-height sun room, solar panels, pellet boiler and shading pergola. These are all described in greater detail below.

The final part of this section examines the capital construction costs associated with the passive house.

3.1 Design and Specification

The two most common residential construction methods in Ireland were used in the design and specification of the prototype passive house, namely timber frame and masonry. It is demonstrated below that the Passivhaus Standard can be easily achieved in Ireland using both of these construction methods and that there are no major advantages of one method over another in terms of thermal performance. Both passive house construction types can be built using mostly conventional elements as can be seen from the detailed wall sections provided in Section 3.1.4.

3.1.1 Combining Aesthetic and Energy Performance in House Design

The design of a passive house is strongly influenced by the need to minimise heat loss through the building fabric, to maximise solar gains and to cater for the various building services. Form and function played equal roles in the design of the prototype passive house. The overriding principle used in the design of the prototype house was that it should be broadly similar in character to contemporary housing, thus maximising ease of acceptance to the current housing market in Ireland.

As has been described in some detail in the preceding sections, much of the ‘free’ energy required to heat a passive house comes directly from the winter sun through south facing windows. It is therefore typical (though not essential) to have a bias in terms of placement of glazing on the southern elevation. Combined with such glazing is the need to prevent overheating in summer and this is easily ensured through the use of shading, in this case with a balcony and pergola. The walls of a passive house are typically thicker than those of conventional construction due to the need for additional insulation and this must be borne in mind in the early stages of design development. The other key issue to consider when developing the design of a passive house is the need to minimise thermal bridges including that created between the foundation and internal walls, for example. Bearing in mind the above principles of glazing orientation, wall thickness and minimised thermal bridging, the designers commenced the development of the prototype passive house.

3.1.2 Decision Support using Passive House Planning Package (PHPP) Software

The Passive House Planning Package (PHPP v2004) has been introduced already in these guidelines. It is an Excel-based software that can be used to ‘test’ the energy performance of a building as it is being designed. It includes Irish climatic data which is very useful in ensuring that buildings are not over-specified in terms of thermal performance. Key aspects of the emerging prototype passive house were entered into the software with a view to ensuring that the design achieved the minimum requirements of (a) yearly space heating delivered energy demand of 15 kWh/m² treated floor area (TFA), and (b) upper limit for total primary energy demand for space and water heating, ventilation, electricity for fans and pumps, household appliances, and artificial lighting not exceeding 120kWh/(m²year), regardless of energy source.

The thickness of insulation required in the walls, floor and roof is strongly guided by the PHPP software, as is the specification and positioning of the windows, the sizing of the back-up space heating system, the consideration of thermal bridges and many other aspects of the design. The design is thus an iterative process. Different insulation types can be tested in the software, with higher performance materials (in terms of lower Lambda values) requiring thinner walls than other less efficient materials.

Two extracts from the PHPP software are included below in order to give an
insight into how the software can be
used to assist the designer. Passive
House Verification Sheet deals with
annual heat requirement based on a
balance of heat losses (transmission and
ventilation) pitched against heat gains
(solar and internal) in order to
summarise the Annual Heat Require-
ment. The annual space heat require-
ment of 15kWh/m² is achieved.

The second illustration provides an
insight into how the U-values of major
building elements are calculated. The
first table provides details on how a U-
value of 0.15W/(m²K) is achieved for a
concrete cavity wall, the second table
details a timber frame wall with an
insulated service cavity and the third
table illustrates the depth of insulation
required in the roof. The partial thermal
bridge caused by the timber studs is
taken into account in the software by
calculating the proportion of the
insulated wall occupied by timber (in
case this 10%).

3.1.3 Prototype Passive House
External Wall Sections

The wall sections for both construction
types are illustrated also. It should be
noted that no dimensions are included
on the sections below as they are
intended to be diagram only. They
should not be used as a basis for
detailed construction drawings.

The following key issues can be noted
from the detailed wall sections:

- Thicker than normal wall sections are
designed in order to accommodate
the required depth of insulation.
There is also substantial insulation in
both the roof and under the floor.
- The insulation at the junction of roof
and wall, as well as wall and floor,
overlap in order to minimise therma-
l bridging at these critical locations.
The window frame is also partly

Passive House Verification

| Building: Semi-Detached Passive House - Concrete Block + Pelletstove |
| Location and Climate: Ireland, Dublin |
| Architect: MosArt Architects |
| 2 Morton’s Lane Wicklow, County Wicklow, Ireland |

Specific Requirements with reference to the treated floor area

Specific Space Heat Requirement	Applied: 15 kWh/m².a	15 kWh/m².a	PH Certificate: Yes
Pressurisation Test Result:	0.6 h⁻¹	0.6 h⁻¹	
Specific Primary Energy Requirement	86 kWh/m².a	120 kWh/m².a	
(BEE, heating, aux. & household appliances)	34 kWh/m².a		
Specific Primary Energy Requirement	17.1 W/m²		
Saving by solar-generated electricity			

Frequency of Overheating:

0.0% over 25 °C

We certify that the values given here have been calculated according to the PHPP methodology and are based on the characteristics of the building. The PHPP calculations are enclosed with this application.

Source: MosArt Architecture.
bedded in insulation in order to reduce heat loss.

- Membranes and specialist tapes are used to create an airtight envelope. This is especially critical at junctions between different elements, such as around windows, and also where the first floor penetrates the external wall façade.

- A service cavity is proposed, internal to the airtight layer in the timber frame wall, in order to accommodate mechanical and electrical fittings. A similar cavity is proposed in the underside of the ceiling at first floor level for both house types.

- Blockwork with a low thermal conductivity is used in the rising walls to reduce thermal bridging between foundations and walls.

Passive House Verification

| Building: Semi Detached Passive House - Timber Frame + Pelletstove |
| Ireland, Dublin |
| Building Type: Residential |
| Architect: MosArt Architects |
| Street: 2 Morton’s Lane |
| Wicklow, County Wicklow, Ireland |
| Mechanical System Consultant: |

- **Year of Construction:** 2007
- **Number of Dwelling Units:** 1
- **Enclosed Volume V:** 503.4 m³
- **Number of Occupants:** 5.0

| Specific Space Heat Requirement: 15 kWh/(m²a) |
| Presanitization Test Result: 0.50 kWh/(m²a) |
| Specific Primary Energy Requirement (DHW, heating, serv. & household electricity): 86 kWh/(m²a) |
| Specific Primary Energy Requirement (DHW, heating and auxiliary electricity): 35 kWh/(m²a) |
| Specific Primary Energy Requirement (omitting self-generated electricity): |

Indoor Temperature: 20.0 °C
Internal Heat Sources: 2.1 W/m²

Treated Floor Area: 199.64 m²

Frequency of Overheating: 0.0% over 25 °C

We certify that the values given here have been calculated according to the PHPP methodology and are based on the characteristics of the building. The PHPP calculations were enclosed with this application.

Source: MosArt Architecture.
Passive House Planning

U-VALUES OF BUILDING ELEMENTS

Building: Semi Detached Passive House - Concrete Block + Pelletstove

1. External Wall - Concrete Block Construction

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Description</th>
<th>Area of Section 1</th>
<th>Area of Section 2 (optional)</th>
<th>Area of Section 3 (optional)</th>
<th>Total Width</th>
<th>U-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. PLASTER</td>
<td>1.400</td>
<td></td>
<td></td>
<td>20</td>
<td>0.175</td>
</tr>
<tr>
<td>2</td>
<td>2. CONCRETE BLOCK</td>
<td>0.300</td>
<td></td>
<td></td>
<td>100</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>3. ROCKWELL INS.</td>
<td>0.025</td>
<td></td>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4. CAVITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage of Sec. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>Percentage of Sec. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Floor - Cellulose Insulation

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Description</th>
<th>Area of Section 1</th>
<th>Area of Section 2 (optional)</th>
<th>Area of Section 3 (optional)</th>
<th>Total Width</th>
<th>U-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. WOOD FLOORING</td>
<td>0.130</td>
<td></td>
<td></td>
<td>20</td>
<td>0.170</td>
</tr>
<tr>
<td>2</td>
<td>2. OSS</td>
<td>0.130</td>
<td></td>
<td></td>
<td>30</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>3. INSULATION (CELLULOSE)</td>
<td>0.060</td>
<td></td>
<td></td>
<td>290</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>4. UNDERLAY</td>
<td>0.170</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5. CONCRETE</td>
<td>2.10</td>
<td></td>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage of Sec. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Percentage of Sec. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49.5</td>
</tr>
</tbody>
</table>

3. Ceiling - Rockwool Insulation

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Description</th>
<th>Area of Section 1</th>
<th>Area of Section 2 (optional)</th>
<th>Area of Section 3 (optional)</th>
<th>Total Width</th>
<th>U-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. SHEETRO</td>
<td>0.020</td>
<td></td>
<td></td>
<td>1.3</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>2. OSS</td>
<td>0.130</td>
<td></td>
<td></td>
<td>1.3</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>3. INSULATION (ROCKWOOL)</td>
<td>0.035</td>
<td>TIMBER</td>
<td></td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4. WoodFibre Board</td>
<td>0.040</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage of Sec. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Percentage of Sec. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.6</td>
</tr>
</tbody>
</table>

4. Party Wall - Concrete Block Construction

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Description</th>
<th>Area of Section 1</th>
<th>Area of Section 2 (optional)</th>
<th>Area of Section 3 (optional)</th>
<th>Total Width</th>
<th>U-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. PLASTER</td>
<td>1.400</td>
<td></td>
<td></td>
<td>20</td>
<td>0.175</td>
</tr>
<tr>
<td>2</td>
<td>2. CONCRETE BLOCK</td>
<td>0.300</td>
<td></td>
<td></td>
<td>100</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>3. INSULATION (MINERALS)</td>
<td>0.035</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage of Sec. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Percentage of Sec. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
</tr>
</tbody>
</table>

U-value of building elements for the prototype passive house, concrete block construction. Source: MosArt Architecture.
U-value of building elements for the prototype passive house, timber frame construction. Source: MasArt Architecture.
1. Roof Structure
 - Roof Insulation Plate
 - Bearing Waterproof Membrane
 - Rafter Continuous vent to soffit
 - Fiber timber insert used to ‘pick up’ adjoining roof sections thereby creating more space for insulation over external wall.

2. Soffit/Ceiling - Timber Frame Construction - U-Value 0.15 W/m²K
 - Wood Fibre Insulation Batt
 - Timber Jamb/Roof Insulation
 - OSB boards
 - Vapour Barrier
 - Service Cavity
 - Master board, skim finish
 - Alkali-tape connecting vapour barrier and block wall

3. External Wall - U-Value 0.15 W/m²K
 - External leaf blockwork
 - Cavity
 - Rock wool Insulation
 - Inner leaf blockwork
 - Alkali-tape membrane lapped around joint hanger
 - skim-finish over alkali-tape and blockwork
 - Precast concrete reinforcement strip over windows

4. Floor Slab - U-Value 0.155 W/m²K
 - Rock wool insulation
 - Alkali-tape connecting block walls with concrete slab
 - Low thermal conductivity blocks: < 0.03 W/m²K overlapping cavity and underfloor Insulation
 - Concrete slab
 - Rock wool Insulation
 - Waterproof Membrane
 - Sand finish
 - Composite hardcore
 - Railing wall of low thermal conductivity blocks: < 0.012 W/m²K
 - Concrete strip foundations

Cross section, prototype passive house. Concrete block construction. Source: MosArt Architecture.
1. Roof Structure
- Roof tile or slab
- Battens: Breather membrane
- Hail
- Continuous vent to eaves

2. Soffit/Ceiling - Timber Frame Construction - U-Value 0.15 W/m²K
- Wood fibre insulation batt
- Timber batts: Faceless insulation
- OSB boards with joints sealed
- Vapour barrier
- Site-insulation
- Plasterboard, skim finish

3. External Wall - U-Value 0.15 W/m²K
- External cladding on vertical battens
- Cavity (minimum 40mm)
- MDF boards
- Timber stud/Faced wall insulation
- OSB boards
- Breather membrane
- Timber battens / faceless insulation
- Sandline cavity
- Plasterboard, skim finish
- Rising wall of low thermal conductivity blocks: 0.12 W/m²K
- Double layer of fibre insulation external to rising wall

4. Floor Slab - U-Value 0.15 W/m²K
- Flooring: render slab
- Concrete slab
- 2 no. staggered layers of rigid insulation with k = 0.023 W/m·K
- Rigid insulation with k = 0.023 W/m·K upstand
- Waterproof Membrane
- Sand bedding
- Corrugated hardcore
- Concrete strip foundation

3.1.4 Prototype Passive House
Design including Mechanical and Electrical Services

The final design of the prototype passive house is presented below in plan, elevation, section and, finally, a 3D model. A number of mechanical and electrical features are highlighted which have been included specifically in the development of the passive house prototype:

- In terms of mechanical ventilation, an average air flow rate of approximately 115 m3/h would be required providing an approximately air change of 0.4 per hour. A fresh air outlet is provided to the living room, dining room, double height sun room (at ground floor level) and bedrooms whereas an extract vent is provided in WC's and bathrooms as well as the kitchen, the utility room and the upper part of the sun room. The mechanical ventilation with heat recovery unit is located in the utility room and will recover the majority of the heat from the extracted air to warm the incoming fresh air. An airing cupboard is located on the first floor along with the washing machine. This space is connected to the ventilation system and can function as drying cabinet for drying clothes in the winter. Sound attenuators should be used in order to minimise noise travelling along ducts and air filters should be changed as required in order not to compromise indoor airflows and/or air quality.

- A pellet stove is proposed for the back-up space and water heating system. For the prototype house the annual space heat requirement is 15 kWh/(m2/year) equating to approximately 1,650 kWh over an entire year (the house measures 110 m2 in treated floor area). This would equate to 155 litres/year of oil, 160 m3/year of mains gas or 350 kg/year of wood pellets (in bags) at a cost of 92 €/year when using oil, 55 €/year when using gas without standing charges for gas or 345 €/year with standing charges) or 97 €/year when using wood pellets. Unit price: Heating oil 5.62c/kWh; mains gas 3.39c/kWh standing charges 256 €/year; wood pellets - in bags 5.92c/kWh. Source: SEI, Dwelling Energy Assessment Procedure (DEAP) 2005 edition, version 2, Manual pp. 84.

The heat load, on the other hand, is approximately 1,800 W, or just 1.8 kW. This amount of energy could be provided by a very small stove/heater/boiler compared to what might be typically required in a family home (there are several such 'small' boilers on the market which range in output from 2.4 to 8 kW, with approximate efficiency of 90%). The pellet stove in the prototype house has been positioned in the sitting room, but space has also been left in the utility room as this might be preferable for users. The pellet stove can be filled manually as the need arises, or could be automatically fed using an underground pellet storage 'bunker' located underground to the public road side of the house for ease of delivery. While a house of this size could probably manage without an automatic feed from a bunker (given an average use of approximately 15 kg of pellets per week), the advantage of such a system is in the space saved from having to store pellets in the house or garden shed. In positioning the pellet stove in the sitting room, there is an aesthetic benefit to be gained from visibility of the flames coupled with the delivery of some heat directly into the sitting room. Care must be taken to use a stove that delivers most of the heat output to the hot water tank and not directly into the room in which it is located. It is also critically important that the pellet stove has its own fresh air supply, given the airtight nature of the construction, and that an appropriate flue for venting of exhaust gases is provided. Such systems are common place in passive houses and will not adversely affect the balanced ventilation system.

- The domestic hot water tank (550 litre) is located adjacent to the mechanical ventilation unit, in the utility room. The back-up heating system, in this case, is provided by heating the fresh air circulating around the house by the hot water in the ‘buffer’ tank using a water to air heat exchanger. In this regard, all supply air ducts should be insulated in order to minimise heat losses, even if they are located within the thermal envelope.

- Solar panels (measuring 7.5 m2) are positioned on the south facing roof which is pitched at the optimal angle of 45 degrees. These have been sized in accordance with the needs of such a house and could include either flat plate collectors or evacuated tubes. Other aspects of the design which are not related to the mechanical or electrical services are listed below:

- All windows in the prototype house are triple glazed with low emissivity coating, thermally broken frames and gaskets especially designed to minimise air infiltration. A passive house triple glazed window is typically four times more energy efficient than a standard double glazed unit and, if south facing, will take in more energy in a year than it lets out. The use of such glazing ensures high thermal comfort in cold weather through minimal temperature difference between internal glass pane surface and room temperature.

- A balcony is provided at first floor level, the primary function of which is to shade the extensive area of glass on the south elevation. This balcony can be accessed via the gallery which overlooks the double-height sun room. A wooden pergola is provided overhead the balcony to shade the upper story windows. A possible alternative to this pergola could be a deep roof overhang but the steepness of the pitch in the prototype house would mean that this latter solution would restrict high level views from the upper storey.

- The internal party walls can be constructed as per a conventional house as long as it is within the boundaries of the building envelope.

- The hatch to the attic should be very well insulated and completely airtight to minimise cold air infiltration.

- Ceiling insulation is placed horizontally on the attic floor in the...
prototype passive house. It would also be possible to place this insulation between the rafters, albeit with design and construction implications.

- The timber frame option depicted in these guidelines is ventilated with an external cavity.
- Energy efficient light fittings should be used which use less primary energy (they will also reduce internal heat gains). It is also preferable to use energy efficient appliances.

Various building methods can be used in the construction of a passive house, including, insulated concrete formwork and externally insulated concrete block wall. The prototype house presented in this publication illustrates masonry and timber frame construction as representative of most typically used building methods for dwellings in Ireland.

3.2 Cost Considerations

An analysis of additional costs associated with construction of the prototype house to the Passivhaus Standard was carried out by Gardiner and Theobald Cost Consultants. The additional cost of the key items including enhanced insulation, glazing, airtightness and thermal bridging was estimated, along with the cost of such technologies as MVHR, solar panels for DHW, a pellet stove as well as energy efficient light bulbs and household appliances. Included in their analysis was an allowance for the foregone costs associated with ‘conventional’ house features such as a fireplace and boiler with radiators. Gardiner and Theobald undertook their analysis for both timber frame and the concrete block construction methods.

The additional ‘extra over’ cost associated with building the prototype house to the Passivhaus Standard was estimated at approximately €25,000 for both construction methods, including VAT and design fees. Approximately 60% of this cost can be attributed towards improvement of the building shell (enhanced insulation, higher grade windows, improved airtightness and reduced thermal bridging) with the remaining 40% covering building systems including MVHR, solar thermal system, low energy lighting and wood pellet boiler.

Gardiner and Theobald next sought to express the additional passive house costs as a proportion of conventional construction costs. The cost of a conventional house varies considerably according to the quality of finishes required. An average cost of €196,000 was proposed as representing a mid-grade finish, including VAT and design fees. The additional cost of €25,000 thus represents approximately 12.5% of current conventional costs.

1 Approximately 17% of houses built in Ireland are semi-detached.
2 According to the Irish Timber Frame Manufacturers’ Association (ITFMA) the number of timber frame house completions has grown from a market share of 15% in 1999 to a market share of 30% in 2006.
3 The TFA is the living area within the thermal envelope. Any rooms or areas beyond the boundaries of the thermal envelope are not considered.
4 Other sources of heat such as gas or heat pumps can also be used.
5 Estimated heating requirement for hot water (incl. 50% SWH) + space heating = 3200 kWh = c.650 kg pellets/year = 10–15 kg/week.
Prototype passive house, floor plans (not to scale). Source: MosArt Architecture
Prototype passive house, cross section (not to scale). Source: MosArt Architecture
Prototype passive house, front, back and side elevations (not to scale). Source: MosArt Architecture
Prototype passive house, 3D model (not to scale). Source: MosArt Architecture
Sustainable Energy Ireland
Renewable Energy Information Office
Shinagh House
Bandon
Co. Cork
Ireland
T. +353 23 42193 F. +353 23 54165 renewables@reio.ie www.sei.ie

SEI is funded by the Irish Government under the National Development Plan 2007 - 2013 with programmes part financed by the European Union.